FDTA: Fully Convolutional Scene Text Detection With Text Attention
نویسندگان
چکیده
منابع مشابه
Improving Text Proposals for Scene Images with Fully Convolutional Networks
Text Proposals have emerged as a class-dependent version of object proposals – efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text recognition. In this paper we propose an improvement over the original Text Proposals algorithm of ...
متن کاملText-Attentional Convolutional Neural Networks for Scene Text Detection
Recent deep learning models have demonstrated strong capabilities for classifying text and non-text components in natural images. They extract a high-level feature computed globally from a whole image component (patch), where the cluttered background information may dominate true text features in the deep representation. This leads to less discriminative power and poorer robustness. In this wor...
متن کاملReading Scene Text with Attention Convolutional Sequence Modeling
Reading text in the wild is a challenging task in the field of computer vision. Existing approaches mainly adopted Connectionist Temporal Classification (CTC) or Attention models based on Recurrent Neural Network (RNN), which is computationally expensive and hard to train. In this paper, we present an end-to-end Attention Convolutional Network for scene text recognition. Firstly, instead of RNN...
متن کاملReading Scene Text in Deep Convolutional Sequences
We develop a Deep-Text Recurrent Network (DTRN) that regards scene text reading as a sequence labelling problem. We leverage recent advances of deep convolutional neural networks to generate an ordered highlevel sequence from a whole word image, avoiding the difficult character segmentation problem. Then a deep recurrent model, building on long short-term memory (LSTM), is developed to robustly...
متن کاملtext Detection with Convolutional Neural Networks
Text detection is an important preliminary step before text can be recognized in unconstrained image environments. We present an approach based on convolutional neural networks to detect and localize horizontal text lines from raw color pixels. The network learns to extract and combine its own set of features through learning instead of using hand-crafted ones. Learning was also used in order t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3018784